If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=10000
We move all terms to the left:
a^2-(10000)=0
a = 1; b = 0; c = -10000;
Δ = b2-4ac
Δ = 02-4·1·(-10000)
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200}{2*1}=\frac{-200}{2} =-100 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200}{2*1}=\frac{200}{2} =100 $
| 36=12c | | (7+6i)+(8+5i)=0 | | 12/3÷x=27/9 | | 10-x=234567898765456789324883488932 | | 6x-5=9x+28 | | 3y/3=-8/3 | | 6÷11=y÷3 | | 0.28x+4R=-8.56 | | a^2=2.89 | | 0.9r=54 | | 3(3x+3-5x-4=25 | | 22-22+x=180 | | 4y-10=y+43 | | 90-28=x | | 2x+37=4x+7 | | -5(c+4)-6=7c+11 | | (12-3x)^2=441 | | 3x+8+x=40 | | x+15=5x+45 | | 8⋅(0,5x−1)=12 | | 2X^2+2y^2+2Z^2=50 | | y+14=4y-18 | | 3x+27+60=90 | | (22-x)+22=180 | | 86-w=281 | | 8x-16+5×+37=17×-4 | | 7b−18b−–2=13 | | 4n+110=180 | | 4k/3=12 | | 60y=50-0,667y | | C=39.69+50x | | (12x)+36=180 |